use std::fmt; pub struct Graph { pub size: usize, pub matrix: Vec>, } pub struct Cutset { pub cardinality: usize, pub vertices: Vec, pub graph: Graph, } impl Clone for Graph { fn clone(&self) -> Self { let mut matrix = vec![vec![0; self.size]; self.size]; for row in 0..self.size { for col in 0..self.size { matrix[row][col] = self.matrix[row][col]; } } return Graph { size: self.size, matrix, }; } } impl fmt::Display for Graph { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for row in 0..self.size { for col in 0..self.size { write!(f, "{}", self.matrix[row][col])?; if col < self.size - 1 { write!(f, " ")?; } } if row < self.size - 1 { write!(f, "\n")?; } } return Ok(()); } } fn iterate(n: usize) -> Vec> { let mut components = Vec::new(); let mut v: Vec = vec![0; n]; loop { let mut sum: usize = 0; for i in &v { sum += *i as usize; } if sum == v.len() { break; } let mut k = 0; for i in 0..v.len() { if v[i] == 1 { v[i] = 0; } else { k = i; break; } } v[k] = 1; components.push(v.clone()); } return components; } impl Graph { pub fn from_g6(line: &String) -> Graph { let mut chars: Vec = Vec::new(); for character in line.chars() { chars.push((character as i32 - 63) as u8); } // TODO: spec allows multi-byte vector size let size = chars[0] as usize; let bytes = &chars[1..]; let mut matrix: Vec> = vec![vec![0; size]; size]; let mut i = 0; for col in 1..size { for row in 0..col { let bit: i32 = (bytes[i / 6] >> (5 - i % 6) & 1) as i32; matrix[row][col] = bit; matrix[col][row] = bit; i += 1; } } return Graph { size, matrix }; } pub fn degree(&self, vertex: usize) -> usize { let mut sum: usize = 0; for i in &self.matrix[vertex] { sum += if *i == 0 { 0 } else { 1 } as usize; } return sum; } pub fn min_degree(&self) -> usize { let mut min = self.size + 1; for i in 0..self.size { let d = self.degree(i); if d < min { min = d; } } return min; } pub fn get_closure_traced(&self, trace_steps: bool) -> Graph { let mut step = if trace_steps { 2 } else { 1 }; let mut closure = self.clone(); for _ in 0..(closure.size * closure.size) { let mut changed = false; for row in 0..closure.size { for col in 0..closure.size { if row == col || closure.matrix[row][col] != 0 { continue; } let sum = closure.degree(row) + closure.degree(col); if sum >= closure.size { closure.matrix[row][col] = step; if trace_steps { step += 1; } changed = true; } } } if !changed { break; } } return closure; } pub fn cutsets(&self) -> Vec { let mut cs = Vec::new(); for vertices in iterate(self.size) { let mut g = self.clone(); for vertex in 0..g.size { for i in 0..g.size { if vertices[vertex] == 0 { g.matrix[vertex as usize][i as usize] = 0; g.matrix[i as usize][vertex as usize] = 0; } } } let cardinality = vertices.iter().sum::() as usize; cs.push(Cutset { cardinality, vertices: vertices.clone(), graph: g, }); } return cs; } pub fn max_independent_cutset(&self) -> Cutset { let mut max_cutset = None; for cutset in self.cutsets() { if cutset.graph.is_independent() { match &max_cutset { None => max_cutset = Some(cutset), Some(m_cutset) => { if cutset.cardinality > m_cutset.cardinality { max_cutset = Some(cutset); } } }; } } return max_cutset.unwrap(); } fn dfs(&self, vertex: &usize, visited: &mut Vec) { visited[*vertex] = 1; for i in 0..self.size { if visited[i] == 0 && self.matrix[*vertex][i] != 0 { self.dfs(&i, visited); } } } fn count_components_partial(&self, included_vertices: &Vec) -> usize { let mut visited = vec![0; self.size]; for i in 0..included_vertices.len() { if included_vertices[i] == 0 { visited[i] = 1; } } let mut count = 0; while visited.iter().sum::() != visited.len() { let mut next = 0; for i in 0..self.size { if visited[i] == 0 { next = i; break; } } self.dfs(&next, &mut visited); count += 1; } return count; } pub fn count_components(&self) -> usize { self.count_components_partial(&vec![1; self.size]) } pub fn get_closure(&self) -> Graph { self.get_closure_traced(false) } pub fn check_toughness(&self, t: f64) -> bool { for cutset in self.cutsets() { let components_count = cutset.graph.count_components_partial(&cutset.vertices) as f64; let cut_cardinality = (self.size - cutset.cardinality) as f64; if components_count > 1.0 && cut_cardinality < t * components_count { return false; } } return true; } pub fn get_toughness(&self) -> f64 { let mut left: f64 = 0.0; let mut right: f64 = 1024.0; // Reasonable limit let eps: f64 = 1e-9; while (right - left).abs() > eps { let mid = (left + right) / 2.0; if self.check_toughness(mid) == false { right = mid; } else { left = mid; } } return (left * 1e7).round() / 1e7; } pub fn is_complete(&self) -> bool { for row in 0..self.size { for col in 0..self.size { if row != col && self.matrix[row][col] == 0 { return false; } } } return true; } pub fn is_independent(&self) -> bool { for row in 0..self.size { for col in 0..self.size { if row != col && self.matrix[row][col] != 0 { return false; } } } return true; } }