summaryrefslogtreecommitdiff
path: root/lab8/lab8.py
blob: 522e3166fde8b238ab515b254af166f4b592169f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import math


def get_poly_coeffs(a, n):
    n += 1
    coeffs = []
    for j in range(n):
        coeffs.append(math.factorial(n - 1) // (math.factorial(j) * math.factorial(n - 1 - j)))
    for i in range(len(coeffs)):
        coeffs[i] = coeffs[i] * (a ** i)
    return coeffs


def euler_func(value, power=1):
    if power == 1:
        return value - 1
    else:
        return value ** power - value ** (power - 1)


def get_order(n, r):
    pwr = n
    cnt = 1
    while pwr % r != 1:
        pwr *= n
        cnt += 1
    return cnt


def check_power(a, n):
    powered_a = a
    b = 1
    while powered_a <= n:
        if powered_a == n:
            return True, b
        powered_a *= a
        b += 1
    return False, 0


def check_prime(e):
    for i in range(2, int(math.sqrt(e))):
        if e % i == 0:
            return False
    return True


def get_all_divisors_brute(n):
    for i in range(1, int(n / 2) + 1):
        if n % i == 0:
            yield i
    yield n


def get_only_prime_divisors(inp):
    g = 1
    prime_divisors = []
    while g != inp:
        for i in get_all_divisors_brute(inp):
            if check_prime(i) and inp % i == 0 and i != 1:
                inp = inp / i
                prime_divisors.append(int(i))
                break
    return prime_divisors


def get_euler(r):
    p_d = get_only_prime_divisors(r)
    euler_func_mult = []
    for el_1 in p_d:
        el_pw = 0
        for el_2 in p_d:
            if el_1 == el_2:
                el_pw += 1
        euler_func_mult.append((el_1, el_pw))

    tmp = []
    for euler_mult in set(euler_func_mult):
        tmp.append(euler_func(*euler_mult))
    euler_func_mult = tmp

    phi_value = 1
    for elem in euler_func_mult:
        phi_value *= elem
    return phi_value


def check_polinom(a, n):
    coeffs = get_poly_coeffs(a, n)
    coeffs.remove(coeffs[0])
    coeffs[-1] -= a
    if not(coeffs[-1]):
        coeffs.remove(coeffs[-1])
    for cf in coeffs:
        if cf % n:
            return False
    return True


def find_smallest_order(n):
    r = 1
    while True:
        r += 1
        if math.gcd(r, n) != 1:
            continue
        o_r = get_order(n, r)
        if o_r > (math.log2(n)) ** 2:
            return r


def aks_test(n):
    r = find_smallest_order(n)
    phi_r = get_euler(r)
    border = math.floor(math.sqrt(phi_r) * math.log2(n))

    for a in range(2, border):
        is_powered, b = check_power(a, n)

        if is_powered and b > 1:
            return False

        if 1 < math.gcd(a, n) < n and a <= r:
            return False

        if n <= r:
            return True

        if not check_polinom(a, n):
            return False

    return True


if __name__ == "__main__":
    print("Введите число n:")
    n = int(input())
    result = aks_test(n)
    if result:
        print(f"Число {n} является простым")
    else:
        print(f"Число не является простым")