summaryrefslogtreecommitdiff
path: root/lab2/lab2.py
blob: e1616a990086996cb3b545d2b634d11b61e4783d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import numpy as np
import math
import matplotlib.pyplot as plt


def check_reflexivity(matrix):
    diag_values = np.diagonal(matrix)
    diag_values = np.unique(diag_values)
    return int(diag_values.size == 1 and diag_values == [1])


def check_antisymmetry(matrix):
    new_matrix = np.multiply(matrix, matrix.T)
    for i in range(len(new_matrix)):
        for j in range(len(new_matrix[i])):
            if i != j and new_matrix[i][j] != 0:
                return 0
    return 1


def check_transitivity(matrix):
    mlp_mx = np.matmul(matrix, matrix)
    for i in range(len(mlp_mx)):
        for j in range(len(mlp_mx[i])):
            if mlp_mx[i][j] > 1:
                mlp_mx[i][j] = 1
    return int((mlp_mx <= matrix).all())


def order_check(relation):
    return check_antisymmetry(relation) and \
            check_reflexivity(relation) and \
            check_transitivity(relation)

############################

def reflexive_closure(matrix):
    n = len(matrix)
    for i in range(n):
        matrix[i][i] = 1


def symmetry_closure(matrix):
    n = len(matrix)
    for i in range(n):
        for j in range(n):
            if matrix[i][j]:
                matrix[j][i] = 1


def transitive_closure(matrix):
    n = len(matrix)
    for _ in range(n):
        for i in range(n):
            for j in range(n):
                for k in range(n):
                    if matrix[i][k] and matrix[k][j]:
                        matrix[i][j] = 1


def create_equivalent_closure(bin_relation):
    relation = bin_relation.copy()
    reflexive_closure(relation)
    symmetry_closure(relation)
    transitive_closure(relation)
    return relation

###################################

def get_slices_list(relation_matrix, for_factor_set=1, attributes=None):
    n = len(relation_matrix)
    slices = []
    for i in range(n):
        slice = []
        for j in range(n):
            if relation_matrix[i][j]:
                if attributes is None:
                    slice.append(j + for_factor_set)
                else:
                    slice.append(attributes[j])
        slices.append(slice)
    return slices


def create_factor_set(bin_relation):
    slices = get_slices_list(bin_relation, 1, None)
    print("Фактор-множество данной эквивалентности:")
    print(set(map(tuple, slices)))
    return slices


def create_representative_system(factor_set):
    factor_set = sorted(factor_set, key=len)
    d = {}
    representative_system = []
    for eq_class in factor_set:
        for representative in eq_class:
            if representative not in representative_system:
                d[representative] = eq_class
                representative_system.append(representative)
                break

    print("Система представителей данного фактор-множества:")
    print(representative_system)
    for representative, eq_class in d.items():
        print(representative, "принадлежит множеству", eq_class)


####################################################

def get_dividers(l):
    d = {}
    for elem in l:
        dividers = []
        for divider in l:
            if elem % divider == 0:
                dividers.append(divider)
        d[elem] = dividers

    return d


def get_min_elem(objects, elements, k=0):
    min_elements = []
    for i in range(k, len(objects)):
        is_min = True
        for j in range(k, len(objects)):
            if objects[j][i] != 0 and i != j:
                is_min = False
        if is_min:
            min_elements.append(elements[i])
    return min_elements


def get_max_elem(some_set, objs, k=0):
    max_elements = []
    for i in range(k, len(some_set)):
        is_max = True
        for j in range(k, len(some_set)):
            if some_set[i][j] != 0 and i != j:
                is_max = False
        if is_max:
            max_elements.append(objs[i])

    return max_elements


def get_least_elem(some_set, objs):
    min_elem_list = get_min_elem(some_set, objs)
    if len(min_elem_list) != 1:
        return None
    else:
        return min_elem_list[0]


def get_greatest_elem(some_set, objs):
    max_elem_list = get_max_elem(some_set, objs)
    if len(max_elem_list) != 1:
        return None
    else:
        return max_elem_list[0]


def get_order_set_elem():
    objs = []
    print('Введите элементы множества:')
    objs = input().split()
    print("Введите значения матрицы бинарного отношения:")
    n = len(objs)
    entries = [list(map(int, input().split())) for i in range(n)]
    some_set = np.array(entries).reshape(n, n)
    if not order_check(some_set):
        print("Введённое отношение не является отношением порядка")
        return 0

    print("Минимальные элементы в множестве:", get_min_elem(some_set, objs))
    print("Максимальные элементы в множестве:", get_max_elem(some_set, objs))
    print("Наименьший элемент в множестве:", get_least_elem(some_set, objs))
    print("Наибольший элемент в множестве:", get_greatest_elem(some_set, objs))

###########################################

def get_dividers_list(n):
    dividers_list = [1]
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            dividers_list.append(i)
            dividers_list.append(n // i)
    dividers_list.append(n)
    return sorted(dividers_list)


def make_hasse():
    print('Введите элементы множества:')
    objs = input().split()
    n = len(objs)
    print("Введите значения матрицы бинарного отношения:")
    entries = [list(map(int, input().split())) for _ in range(n)]
    some_set = np.array(entries).reshape(n, n)
    if not order_check(some_set):
        print("Введенное отношение не является отношением порядка")
        return []

    hasse_levels = {key: 1 for key in objs}
    i = 0
    some_k = 0
    while True:
        min_elems = get_min_elem(some_set, objs, some_k)
        i += 1

        if not min_elems:
            break

        for elem in min_elems:
            hasse_levels[elem] = i

        some_k += len(min_elems)

    connected_values_dict = {}
    for key, value in hasse_levels.items():
        lvl_diff = 1
        connected_values = []
        relation_list = get_slices_list(some_set, 0, objs)[objs.index(key)]
        for i in relation_list:
            if hasse_levels[i] == value + lvl_diff:
                connected_values.append(i)

        connected_values = list(set(connected_values))
        connected_values.sort()
        connected_values_dict[key] = connected_values

    hasse_data = []
    for i in hasse_levels:
        hasse_data.append([i, hasse_levels[i], connected_values_dict[i]])

    # связи здесь построены снизу-вверх
    return hasse_data


def visualize_hasse(hasse_data):
    plt.xlim(-1.0, len(hasse_data) * 2)
    plt.ylim(0, len(hasse_data) * 3 + 1.5)

    lvl_to_elems = {key[1]: 0 for key in hasse_data}
    for hasse_elem in hasse_data:
        for level in lvl_to_elems:
            if hasse_elem[1] == level:
                lvl_to_elems[level] += 1

    max_lvl_elem_amount = lvl_to_elems[max(lvl_to_elems, key=lvl_to_elems.get)]

    lvl = 4
    elem_address = {}
    for hasse_elem in hasse_data:
        elem_lvl = hasse_elem[1]
        elem = hasse_elem[0]
        hasse_elem_y = elem_lvl * lvl
        hasse_elem_x = 1.5 * (max_lvl_elem_amount - lvl_to_elems[elem_lvl])
        lvl_to_elems[elem_lvl] += -1
        plt.text(hasse_elem_x - 0.1, hasse_elem_y - 0.1, f'{elem}')
        plt.scatter(hasse_elem_x + 0.1, hasse_elem_y + 0.1, s=350, facecolors='none', edgecolors='black')
        elem_address[elem] = [hasse_elem_x + 0.1, hasse_elem_y + 0.1]

    for hasse_elem in hasse_data:
        x1, y1 = elem_address[hasse_elem[0]][0], elem_address[hasse_elem[0]][1]
        for connected_elem in hasse_elem[2]:
            plt.plot([x1, elem_address[connected_elem][0]],
                     [y1 + 1, elem_address[connected_elem][1] - 1],
                     color="black")

    plt.show()

#########################################################

def get_closure_system(rel_matrix, objs, attrs):
    closure_system = [objs]
    row_slices = get_slices_list(rel_matrix.copy().T, 1, objs)
    is_empty_included = False
    for attr_i in range(len(attrs)):
        after_intersection = [list(row_slices[attr_i])]
        for closure_i in range(len(closure_system)):
            cs_set = set(closure_system[closure_i])
            intersection = set(row_slices[attr_i]) & cs_set
            intersection = sorted(intersection)
            if intersection not in after_intersection \
                    and intersection or not is_empty_included:
                after_intersection.append(intersection)

            if not intersection:
                is_empty_included = True

        if after_intersection not in closure_system:
            closure_system += after_intersection

    new_closure_system = []
    for closure in closure_system:
        if closure not in new_closure_system:
            new_closure_system.append(closure)

    print("Система замыканий:", new_closure_system)
    return closure_system


def get_context(closure, rel_matrix, objs, attrs):
    if not closure:
        context = attrs
    else:
        column_slices = get_slices_list(rel_matrix, 1, attrs)
        list_of_sets = []
        for elem in closure:
            obj_i = objs.index(elem)
            list_of_sets.append(set(column_slices[obj_i]))

        context = list_of_sets[0]
        for cur_set in list_of_sets:
            context = context.intersection(cur_set)

    return sorted(context)


def make_lattice_concept():
    print("Введите элементы множества:")
    objects = input().split()
    print("Введите множество атрибутов:")
    attributes = input().split()
    print('Введите матрицу отношения на декартовом произведении множеств объектов и атрибутов:')
    entries = []
    for _ in range(len(objects)):
        entries.extend(map(int, input().split()))
    relation_matrix = np.array(entries).reshape(len(objects), len(attributes))
    closure_system = get_closure_system(relation_matrix, objects, attributes)

    lattice_concept = []
    for closure in closure_system:
        context = get_context(closure, relation_matrix, objects, attributes)
        concept = closure, context
        lattice_concept.append(concept)

    new_lattice_concept = []
    for concept in lattice_concept:
        if concept not in new_lattice_concept:
            new_lattice_concept.append(concept)

    print("Решетка концептов:", new_lattice_concept)

##################################################

def main():
    print("1. Эквивалентное замыкание, система представителей")
    print("2. минимальные и максимальные элементы")
    print("3. Построение диаграммы Хассе")
    print("4. Построение решётки концептов")
    task = int(input("Выберите задачу: "))

    if task == 1:
        n = int(input("Введите размер матрицы: "))
        l = []

        print(f"На следующих {n} строках введите матрицу:")
        for _ in range(n):
            l.extend(map(int, input().split()))
        matrix = np.array(l, dtype=bool).reshape(n, n)

        # 1 - эквивалентное замыкание
        eq = create_equivalent_closure(matrix)
        print("Матрица эквивалентного замыкания:")
        print(eq.astype(int))

        # 2 - система представителей
        factor_set = create_factor_set(matrix)
        create_representative_system(factor_set)

    elif task == 2:

        # 3 - минимальные (максимальные) и наименьший (наибольший) элементы множества
        get_order_set_elem()
    
    elif task == 3:
        # 4 - Диаграмма Хассе
        hasse_data = make_hasse()
        if hasse_data:
            print(hasse_data)
            visualize_hasse(hasse_data)

    elif task == 4:
        # 5 - Решётка концептов
        make_lattice_concept()


if __name__ == "__main__":
    main()